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Marcus' data. 
solvent interaction, similar to that suggested pre- metric. 

There exists also the posssibility of a of charge on the ternary complexes should be asym- 

viouslyl8 for the uncharged mixed mercuric halides, 
since the binary HgXd-2 ions, being tetrahedral,lg have 
a symmetric charge distribution, while the distribution 
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The association constants K I  and K2 for the formation of PbBr+ and PbBr2 were evaluated from electromotive force rneas- 
urements in molten mixtures of NaiXOs and KNOB. The constants K I  and KZ in mole fraction units are, respectively, 
260, 125 at  240°, 190, 85 at  283", and 170, 70 at  300' when the solvent is equimolar NaN03 and KNOI. A variation in 
the composition of the solvent changes the value of the association constants so as to give stronger binding as the propor- 
tion of KNOj increases. The temperature dependence of the association constants, within the experimental error, is pre- 
dictable from calculations based on the quasi-lattice model. 

Introduction 

In this paper, the association constants for the for- 
mation of the species PbBrf and PbBrz in molten Na- 
N03-KN03 mixtures are evaluated from electromotive 
force measurements. The values are compared with 
the equations 

Ki = Z(Pi - 1) 
Z(Z - 1) 

(1) 

(2) KiK2 = ___ ( P I P 2  - 2P1 + 1) 

which have been derived from the quasi-lattice model, a-5 

where K1 and Kz are the association constants for the 
formation of PbBr* and PbBr,, respectively, 2 is a 
coordination number, P,  = exp( - AA i / R T ) ,  and Ai2 i is 
the specific free energy of bond formation. In pre- 
vious papers,6 it was shown that for the association of 
monovalent ions, A A i  is independent of temperature for 
any given association in any system. Recently, it was 
demonstrated7 that the equations also hold for the asso- 
ciation of a divalent ion (cadmium) with Br- and I-. 
Since the quasi-lattice theory applies to monovalent 
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ions only, this indicates that calculations based on the 
model, i . e . ,  eq. 1 and 2,  are more general than is implied 
by the model. 

The comparison of experimental measurements with 
eq. 1 and 2 in this paper was made to further test the 
applicability of these equations for predicting the tem- 
perature coefficient for associations involving a divalent 
ion. The influence of the solvent cation on the associa- 
tion constants also was measured by varying the compo- 
sition of the NaN03-KN03 melt. 

Experimental 

Reagent grade NaBr was dried a t  300" and stored in a desic- 
cator. Reagent grade Pb(NOa)s was dried in a vacuum oven at  
150' and likewise stored in a desiccator. Otherwise the proce- 
dure, apparatus, and methods of calculation were essentially 
the same as described previously.6~7 

Results and Discussion 

It was demonstrated' that silver-solid silver halide 
electrodes are reversible to halide ions in molten ni- 
trates and that the activity coefficient of the alkali 
halide, Y(N~,K)x ,  may be evaluated from e.m.f. meas- 
urements of the cell 

11 (i&,KjNOa I I 
and the equation 

(3)  

From the change in e.m.f. (AE) occurring with the addi- 
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TABLE I 
E.M.F. CHANGES OF THE CELL IN MILLIVOLTS ON ADDITIOS OF Pb(S@s)2 

Temperature 240" 
Solvent: 50 mole yG P\'aNOs; 50 mole Yo KNO, 

R x a ~ r  = 8 47 X 10-4 R N ~ B ~  = 2.08  X 10.8 
RPh(NO& X 10' A E ,  m.v. Rmmo&, X I n 3  A E ,  m.v. 

0.189 2 . 3  0.198 2 . 5  
0.348 4 . 0  0.669 6 . 5  
0,770 7 . 6  1.53 1 2 . 5  
1.33 12.0 2.37 18.2 
1.99 16.9 
3 , 1 0  24.2 

0.166 
0.330 
0.621 
1.04 
1 ,74  
2.65 
3.94 
5.42 

2 . 3  
3 . 9  
5 . 8  
9 . 0  

14.0 
19.7 
26.9 
33 .9  

R N ~ B ~  = 2.37  X 10-3  
RPb(N03)z  X 10' m.V 

0.132 1 . 2  
0,274 2 . 5  
0.586 5 . 4  
1 .08  8 . 9  
2.08 14.8 
3 . 4 3  22 .4  
4.67 31 0 

0.164 
0.473 
0.724 
1.12 
1.81 
2 .68  
4.26 
5 .21  

2 7  
5 3  
7 0  
9 6  

13 8 
18 7 
27 2 
35 8 

R N ~ B ~  = 3.54 x 10-3 
RPI,(NO,)~ X IO3 A E ,  m.v. 

0.132 0 . 8  
0.266 1 . 8  
0 622 4 . 6  
1.13 8 . 0  
1.74 12.3 
2 .75  18.8 
4.14 26 .1  
5.51 33.0 

7 R N ~ B ~  = 5.10 x 10-3 7 

Rpb(xo,)n X A E ,  m.V. RPb(NOa)Z  x lo3  AE, m.v. 

0.304 2 . 4  3.31 19.8 
0.512 4 . 0  4.21 24.7 
0.942 6 . 3  5.14 29.6 
1.50 9 . 7  5.64 32.3 
2.30 14.0 

Solvent: 50 mole 7c NaN03; 50 mole yo KSOa 
R~~~~ = 1.02 x 10-3 RX\r,Br = 1 . 9 8  x 

RPb(NOd), X lo3  A E ,  m.v. RPI,(NO,), X I O 3  AE,  m.v. 

0.163 1 . 6  0.131 1 . 3  
0.346 3 . 3  0.293 2 . 7  
0.655 5 . 8  0.556 4 . 6  
1 .30  10.4 0,879 6 . 4  
2.39 17.7 1.24 9 . 1  
4.02 26. 5 1 .84 12.6 
5.31 33.1 2.66 17.4 

3.73 23.6 
4.86 28.9 

RxaBr = 3.51 x 
Rpb(N0,)2 X IO3 A E ,  m.v 

0.126 1 . 2  
0.284 2 . 4  
0.623 5 . 2  
0.978 8 . 0  
1.53 11.6 
2.54 17 .5  
3.66 23.1 
4 .90  29.6 

R~~~~ = 4 . 7 0  x 10-3 

0.104 1 . 0  
0.305 2 . 6  
0.526 4 . 7  
0.805 5 . 9  
1 .08  10.2 
1.43 11 .3  
2 .00  14 .4  
2.84 1 8 . 5  
4.03 24.3 
5 I25 30.4 

RPI,(NO,I~ X IO3 A E ,  m.v. 

Temperature 280' 
Solvent: 75 mole 76 r\'ayo~; 25 mole yo KNO, 

R ~ ~ B ~  = 1.02  x 10-3 R N ~ B ~  = 1 . 9 9  x 10-3 

0.124 0 . 8  0.127 1 . 0  
0.339 2 . 4  0.333 2 . 2  
0.635 4 . 6  0.638 4 . 5  
1 .01  7 .7  1.12 8 . 0  
1.81 13.6 2.01 13.5 
2.66 19.0 3.17 19 .8  
3 . 8 0  24 .5  4.61 26.8 
4.78 30.4 5.80 32.6 
5.37 33.3 

RPI,(NO,)~ X I O 3  A.% m.v. R P ~ ( N O ~ ) ~  X 10' A& m.v. 

R N ~ B ~  = 2 , 6 0  x 10 -3  

0.152 1 . 4  
0.378 3 . 2  
0.686 5 . 0  
1 . 0 1  7 . 5  
1.78 1 2 . 8  
2 .80  18 .4  
4 .26  26.4 
5.04 30.0 

RPb(NO,)I x 10' AE,  m.V. 
R N ~ B ~  = 4 . 3 0  x 10-3 

0.153 1.1 
0.278 3 . 0  
0,538 4 . 9  
0.887 6 . 8  
1.46 9 . 5  
2 .60  15.1 
4.00 22.1 
5.68 29.2 

RPt,(xoI)2 X I O 3  AE, m.v. 

Temperature 300" 
Solvent: 25 mole yo NahTOl; 75 mole yo KNOa 

R N ~ B ~  x 1.17  x 10-3 
RFh(No,j?.  X I O 3  AE,  m.v 

0.165 2 . 1  
0.513 5 . 2  
0.865 7 . 6  
1.43 11.4 
2.11 15.2 
2.83 19.0 
3.95 24.2 
5.40 30.6 
5.80 32 .8  

R N ~ B ~  = 2.20 X 10-3 
RP~(NO,) ,  X I O 3  m.v 

0.213 2 . 7  
0.445 4 . 4  
0.925 7 , 5  
1.37 10.2 
2.25 15 .0  
3 .48  21.6 
4.88 28.2 
5.93 33.7 

R N ~ B ~  = 1 . 8 4  x 10-3 
RPI,(NO,)~ X lo1 A E ,  m.v. 

0.157 2 . 0  
0,306 3 . 5  
0.534 5.1 
0.845 6 . 9  
1.49 10.6 
2.09 13.7 
3.26 19 .9  
4.54 26.1 
5.82 31.8 
R N ~ B ~  = 3.59 X 10-3 

R P ~ , ( N O , I ~  X 10' AE, m.v. 

0.257 2 . 0  
0.584 4 . 1  
1.06 7 , o  
1 .59 10.4 
2 .35  15.8 
3 .45  22.2 
5.12 30.0 
6.02 34.6 

- R N ~ B ~  = 3.70  x 10-3 - 
R p b ( ~ o ~ ) ~  X 103 AE. m.v. R p h ( N o 3 ) ?  X 103 A E ,  m.v. 

0.217 1 . 4  1.28 12.8 
0.542 3 . 5  3 . 2 8  18 .0  
0.930 5 . 7  4.74 25.3 
1.51 8 . 6  5 9 2  31.9 

0.059 
0.248 
0.653 
0,970 
1.34 
1 .74 
2 .33  
3.20 

0 9  
2 7  
4 5  
6 7  
9 3  

12.1 
15 5 
21 5 

0.117 
0.329 
0,581 
1 03 
1 54 
2 57 
3 82 
5 51 

1 . 3  
3 . 0  
4 . 5  
7 . 4  

11.2 
16 .8  
22 .7  
29 .5  
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TABLE I (Continued) 
Temperature 300’ 

Solvent. 50 mole yo NaN08, 50 mole Yo KNO3 
R N ~ B ~  = 1 85 X 10 8 R N ~ B ~  = 2 30 x 10-3 

RPb(NO3)z X 10’ A E ,  m v  RPb(N03)z X 10’ A E ,  m V 

0 151 1 2  0 213 1 8  
0 396 3 5  0 483 3 7  
0 720 7 7  0 825 5 5  
1 33 11 5 1 23 7 8  
2 10 16 3 1 94 11 6 
2 80 20 7 3 03 17 2 
3 54 24 1 4 44 25 0 
4 56 28 9 6 00 33 0 - R N ~ B ~  = 3 16 X 10-8 - 

RPb(NO8)Z X 10’ AE,  m V RPb(N03,a  X 10’ AE,  m v  

0 157 1 3  2 15 13 6 
0 384 3 1  3 44 19 8 
0 735 5 9  5 43 28 8 
1 24 9 1  6 34 34 6 

Solvent: 75 mole yo h’aNO3; 25 mole yo KNOa 
R N ~ B ~  = 1 23 x 10-3  R N ~ B ~  = 2 43 x 10-3 

0 220 2 1  0 178 1 6  
0 550 4 1  0 592 4 4  
0 882 6 1  1 08 7 7  
1 02 7 5  1 74 11 7 
1 46 10 4 2 88 17 5 
2 22 14 8 4 02 22 7 
3 67 22 1 4 96 26 7 
4 62 26 5 5 76 30 0 
5 41 30 1 

RPb(N03)2  X 10’ 4E3 m V R P b ( N O &  X IO3 m V 

R N ~ B ~  = 5 03 x io-a--- - 
R P b ( N O &  X IO3 AE,  m v  R P b ( N O &  X loa AE,  m V 

0 206 1 7  2 65 15 7 
0.584 4 4  3 64 19 6 
1 08 8 0  4 90 25.0 
1 88 11 4 5 64 28 2 

tions of Pb(N03)z to the right hand half-cell, values of 
1 / y ( N a , ~ )  Br were calculated at several fixed concentra- 
tions of alkali bromide. Values of 4E obtained in 
75-25,50-50, and 25-75 mole yo mixtures of NaN03 and 
KN03 a t  different temperatures and a t  several fixed con- 
centrations of NaBr are given in Table I. 

The association constants for the formation of asso- 
ciated lead halide species PbX+, PbX2, PbzX3+, etc., 
are defined as 

etc., in which the R are mole ratios of the species indi- 
cated and in dilute solutions are essentially the same as 
mole fractions. The stoichiometric activity coefficient 
of (Na,K)X may be expressed as7 
~ / Y ( N & . K ) x  = 1 f K i R P b ( N o 8 ) Z  -t Ki&.zR2Pb(No , i ,  -k 

(2KXz - K i 2 ) R P b ( N 0 3 ) z I I ( N a , K ) x  -k . . (4) 

in the range of concentrations in which the associated 
species follows Henry’s law. Plots of l / ~ ( ~ ~ , K ) x  vs. 
the mole ratio of Pb(NO& a t  low concentrations of 
alkali halide and of Pb(N03)~ were linear. This indi- 
cates that the formation constants of polynuclear 

species are comparatively small relative to the first as- 
sociation constant. The first association constants 
were evaluated graphically as the limiting slopes 

RPb(N03)2 - 
R(Na,K)X -+ 0 

Large scale plots of ~ / Y ( ~ ~ , K ) X  vs. the mole ratio of Pb- 
(N03)z were made and the limiting slopes a t  R , P b ( ~ ~ s ) z  = 
0 were estimated for each fixed stoichiometric mole 
ratio of (Na,K)X. These slopes then were plotted us. 
the mole ratio of alkali halide ( R ( N a , ~ ) ~ )  and extrapo- 
lated to RtNa,K)X = 0. The intercept is equal to K1 and 
from the limiting slope of this plot Kz may be evaluated 
from the relationship 

RPb(N03)z 
R ( N a t K ) X  @ 

Values of K1 and Kz calculated from the data in Table I 
are given in Table 11. The estimated errors are about 
6% in K1 and 12% in Kz.  

TABLE I1 
ASSOCIATION CONSTANTS AND DERIVED PARAMETERS FOR Pb++ 

+ Br- IN MOLTEN NaN03-KN03 MIXTURES 
Composi- 

tion, -AA1, - AA2, 
mole yo kcal /mole kcal./mole 
NaN03- Temp,  z =  Z L  z =  z =  z =  z =  

KNOa O C .  KI 4 5 6 K 2 4  5 6 

75-25 280 180 4 21 3.97 3 77 78 4 4 4 .1  3 8 
300 160 4 23 3 98 3 78 70 4 4 4 0 3 8 

280 190 4 27 4 03 3 83 85 4 . 5  4 1 3 9 
300 170 4 30 4 05 3 84 70 4 4 4 1 3 8 

300 175 4 33 4 08 3 88 67 4 4 4 . 1  3 8 

50-50 240 250 4 23 4 01 3.83 125 4 . 5  4 2 4 0 

25-75 280 200 4.32 4 08 3 89 82 4 4 4 1 3 9 

Values of AA1 and 4A2 were calculated from eq. 1 
and 2 for Z = 4, 5, and 6, which should include all rea- 
sonable values of 2. For any given solvent and any 
one value of 2, values of AA1 are constant a t  all the 
temperatures investigated. This is further confirma- 
tion that the quasi-lattice theory is useful for predicting 
the temperature coefficient of K1 for associations in- 
volving divalent ions. Within the experimental error, 
AAz also appears constant and independent of tempera- 
ture, and does not differ greatly from 4A1. However, 
the precision of Kz was not good enough for a precise 
evaluation of the temperature coefficient of Kz.  

The solvent influences the value of K1 so as to lead to 
stronger binding in molten NaN03-KN03 mixtures 
having a higher proportion of KNOB. This is similar 
to the influence of the solvent on associations cf Ag+ 
and Cd++ with halide ions. This solvent effect has 
been rationalized in terms of coulomb interactiors fcr 
the association of A.g+ with C1- and Br-.6f The pic- 
ture is not as simple for polyvalent cations such as Pb ++ 

and Cd++ although one might speculate that the Na+ 
ion, which is smaller than the K +  ion, would tend t o  
“polarize” electrons which are involved in binding Pb  ++ 

and Br- away from the bond, thus weakening the bond. 




